ESOs: Das Black-Scholes-Modell verwenden Unternehmen müssen ein Optionspreismodell verwenden, um den Fair Value ihrer Mitarbeiterbeteiligungsoptionen (ESOs) zu bezahlen. Hier zeigen wir, wie Unternehmen diese Schätzungen nach den bis April 2004 geltenden Regeln darstellen. Eine Option hat einen Mindestwert Eine typische ESO hat einen Zeitwert, aber keinen intrinsischen Wert. Aber die Option ist mehr wert als nichts. Minimalwert ist der Mindestpreis, den jemand bereit wäre, für die Option zu zahlen. Es ist der Wert, der durch zwei vorgeschlagene Gesetzgebungen (die Enzi-Reid und Baker-Eshoo Kongressrechnungen) befürwortet wird. Es ist auch der Wert, den private Unternehmen nutzen können, um ihre Zuschüsse zu bewerten. Wenn Sie Null als Volatilitätseingang in das Black-Scholes-Modell verwenden, erhalten Sie den Minimalwert. Private Unternehmen können den Mindestwert verwenden, da ihnen eine Handelsgeschichte fehlt, was es schwierig macht, die Volatilität zu messen. Gesetzgeber wie der Mindestwert, weil sie die Volatilität - eine Quelle der großen Kontroversen - aus der Gleichung entfernt. Insbesondere die Hightech-Gemeinschaft versucht, die Black-Scholes zu untergraben, indem sie die Unzuverlässigkeit der Volatilität behauptet. Leider entfernt die Beseitigung der Volatilität unfair Vergleiche, weil sie alle Risiken beseitigt. Zum Beispiel hat eine 50-Option auf Wal-Mart-Aktien denselben Mindestwert wie eine 50-Option auf einem High-Tech-Aktien. Der Mindestwert setzt voraus, dass der Bestand mindestens um den risikofreien Zinssatz wachsen muss (z. B. die Rendite von fünf oder zehn Jahren). Wir veranschaulichen die untenstehende Idee, indem wir eine 30 Option mit einem 10-jährigen und einem fünf risikolosen Zinssatz (und keine Dividenden) untersuchen: Sie sehen, dass das Minimalwertmodell drei Dinge macht: (1) Der risikolose Zinssatz für die volle Laufzeit, (2) eine Ausübung und (3) den zukünftigen Gewinn auf den Barwert mit demselben risikolosen Zinssatz diskontiert. Berechnung des Mindestwertes Wenn wir erwarten, dass eine Aktie mindestens eine risikofreie Rendite nach der Mindestwertmethode erzielt, reduzieren Dividenden den Wert der Option (da der Optionsinhaber auf Dividenden verzichtet). Setzen wir einen anderen Weg, wenn wir einen risikofreien Satz für die Gesamtrendite, aber einige der Rückkehr Lecks zu Dividenden übernehmen, wird die erwartete Preiserhöhung niedriger sein. Das Modell spiegelt diese niedrigere Wertschätzung durch eine Verringerung des Aktienkurses wider. In den beiden Exponaten unten bilden wir die Minimalwertformel. Die erste zeigt, wie wir einen Mindestwert für eine nicht dividendenberechtigte Aktie erreichen, die zweite ersetzt einen reduzierten Aktienkurs in die gleiche Gleichung, um die reduzierende Wirkung von Dividenden widerzuspiegeln. Hier ist die Mindestwertformel für eine dividendenberechtigte Aktie: s Aktienkurs e Eulers-Konstante (2.718) d Dividendenrendite t Optionsausdruck k Ausübungspreis r risikoloser Zinssatz Sorgen Sie sich nicht um die Konstante e (2.718) Nur einen Weg, um zusammen und Rabatt kontinuierlich anstelle der Compoundierung in jährlichen Abständen. Black-Scholes Mindestwertvolatilität Wir können die Black-Scholes als gleichwertig ansehen mit den Optionen Mindestwert plus Zusatzwert für die Optionsvolatilität: Je größer die Volatilität ist, desto größer ist der zusätzliche Wert. Graphisch können wir den Minimalwert als eine aufsteigende Funktion des Optionsausdrucks sehen. Volatilität ist ein Plus-up auf der Minimalwertlinie. Diejenigen, die mathematisch geneigt sind, können es vorziehen, die Black-Scholes zu verstehen, indem sie die von uns bereits genannte Minimalwertformel nehmen und zwei Flüchtigkeitsfaktoren (N1 und N2) addieren. Gemeinsam erhöhen diese den Wert je nach Volatilitätsgrad. Black-Scholes muss für ESO angepasst werden Black-Scholes schätzt den Fair Value einer Option. Es handelt sich um ein theoretisches Modell, das mehrere Annahmen einschließlich der vollständigen Handelsfähigkeit der Option (dh des Ausmaßes, in dem die Option an den Optionsinhabern ausgeübt oder verkauft werden kann), und eine konstante Volatilität während des gesamten Optionslebens umfasst. Wenn die Annahmen korrekt sind, ist das Modell ein mathematischer Beweis und seine Preisausgabe muss korrekt sein. Aber streng genommen sind die Annahmen wahrscheinlich nicht korrekt. Zum Beispiel braucht es Aktienkurse, um in einem Weg namens Brown'sche Bewegung zu bewegen - eine faszinierende Zufallswanderung, die tatsächlich in mikroskopischen Partikeln beobachtet wird. Viele Studien bestreiten, dass sich die Bestände nur auf diese Weise bewegen. Andere denken, Brown'sche Bewegung nähert sich eng genug, und betrachten die Black-Scholes eine ungenaue, aber nützliche Schätzung. Für kurzfristige gehandelte Optionen sind die Black-Scholes in vielen empirischen Tests äußerst erfolgreich gewesen, die die Preisentwicklung mit den beobachteten Marktpreisen vergleichen. Es gibt drei wesentliche Unterschiede zwischen ESOs und kurzfristigen gehandelten Optionen (die in der nachstehenden Tabelle zusammengefasst sind). In technischer Hinsicht verstößt jede dieser Unterschiede gegen eine Black-Scholes-Annahme - eine Tatsache, die durch die Rechnungslegungsvorschriften in FAS 123 in Betracht gezogen wird. Diese beinhalteten zwei Anpassungen oder Korrekturen an den Modellen natürliche Leistung, aber die dritte Differenz - dass die Volatilität nicht über die ungewöhnlich langen konstant bleiben kann Leben einer ESO - wurde nicht angesprochen. Hier sind die drei Unterschiede und die vorgeschlagenen Bewertungskorrekturen vorgeschlagen FAS 123, die noch gültig sind Stand März 2004. Die wichtigste Fix unter den aktuellen Regeln ist, dass Unternehmen können die erwartete Lebensdauer im Modell anstelle der tatsächlichen volle Laufzeit. Es ist typisch für ein Unternehmen, eine erwartete Lebensdauer von vier bis sechs Jahren verwenden, um Optionen mit 10-Jahres-Bedingungen zu bewerten. Das ist eine unangenehme Verlegenheit - eine Band-Hilfe, wirklich - seit Black-Scholes den eigentlichen Begriff verlangt. Aber FASB war auf der Suche nach einem quasi-objektiven Weg, den ESO-Wert zu reduzieren, da er nicht gehandelt wird (das heißt, den ESO-Wert für seinen Mangel an Liquidität zu reduzieren). Fazit - Praktische Effekte Der Black-Scholes ist empfindlich auf mehrere Variablen, aber wenn wir eine 10-jährige Option auf eine Dividendenausschüttung und eine risikofreie Rate von 5 annehmen, ergibt sich der Minimalwert (vorausgesetzt keine Volatilität) Des Aktienkurses. Wenn wir die erwartete Volatilität von z. B. 50 hinzufügen, verdoppelt sich der Optionswert in etwa auf fast 60 des Aktienkurses. Also, für diese besondere Option, Black-Scholes gibt uns 60 der Aktienkurs. Aber wenn es auf eine ESO angewendet wird, kann ein Unternehmen die tatsächlichen 10-Jahres-Term-Input auf eine kürzere erwartete Lebensdauer zu reduzieren. Für das obige Beispiel reduziert die Verringerung der 10-Jahres-Laufzeit auf eine Fünf-Jahres-erwartete Leben bringt den Wert auf etwa 45 der Nennwert (und eine Reduktion von mindestens 10-20 ist typisch, wenn die Reduzierung der Begriff auf die erwartete Lebensdauer). Schließlich bekommt das Unternehmen eine Friseuse Reduktion in Erwartung der Verfall aufgrund der Mitarbeiter Umsatz zu nehmen. In dieser Hinsicht wäre ein weiterer Haarschnitt von 5-15 üblich. So würden in unserem Beispiel die 45 weiter auf eine Aufwandsentschädigung von etwa 30-40 des Aktienkurses reduziert werden. Nach dem Hinzufügen von Volatilität und dann Subtrahieren für einen reduzierten erwarteten Lebensdauer und erwarteten verwirkt, sind wir fast wieder auf den Mindestwert ESOs: Verwendung der Binomial ModellBlack Scholes-Modell Was ist das Black Scholes-Modell Das Black Scholes-Modell, auch bekannt als die Black - Scholes-Merton-Modell ist ein Modell der Preisveränderung im Zeitablauf von Finanzinstrumenten wie Aktien, die unter anderem zur Ermittlung des Preises einer europäischen Call-Option herangezogen werden können. Das Modell geht davon aus, dass der Preis für stark gehandelte Vermögenswerte einer geometrischen Brownschen Bewegung mit konstanter Drift und Volatilität folgt. Bei Anwendung auf eine Aktienoption. Das Modell beinhaltet die konstante Preisvariation der Aktie, die Zeitwert des Geldes. Der Optionsausübungspreis und die Zeit bis zum Auslaufen der Optionen. Laden des Players. BREAKING DOWN Black Scholes Modell Das Black Scholes Modell ist eines der wichtigsten Konzepte der modernen Finanztheorie. Es wurde 1973 von Fisher Black, Robert Merton und Myron Scholes entwickelt und ist noch weit verbreitet im Jahr 2016. Es gilt als eine der besten Möglichkeiten, um faire Preise von Optionen bestimmen. Das Black Scholes-Modell benötigt fünf Eingangsgrößen: den Ausübungspreis einer Option, den aktuellen Aktienkurs, die Zeit bis zum Auslaufen, den risikofreien Zins und die Volatilität. Darüber hinaus geht das Modell davon aus, dass die Aktienkurse einer logarithmischen Verteilung folgen, da die Vermögenspreise nicht negativ sein können. Darüber hinaus geht das Modell davon aus, dass es keine Transaktionskosten oder Steuern gibt, wobei der risikofreie Zinssatz für alle Laufzeiten konstant ist, wobei Leerverkäufe von Wertpapieren unter Verwendung von Erträgen zulässig sind und es keine risikolosen Arbitragemöglichkeiten gibt. Black-Scholes-Formel Die Black-Scholes-Call-Optionsformel wird durch Multiplikation des Aktienkurses mit der kumulativen Standard-Normalwahrscheinlichkeitsverteilungsfunktion berechnet. Danach wird der Nettobarwert (NPV) des Ausübungspreises multipliziert mit der kumulativen Normalnormalverteilung von dem resultierenden Wert der vorherigen Berechnung subtrahiert. In der mathematischen Schreibweise ist C SN (d1) - Ke (-rT) N (d2). Umgekehrt könnte der Wert einer Put-Option nach folgender Formel berechnet werden: P Ke (-rT) N (-d2) - SN (-d1). In beiden Formeln ist S der Aktienkurs, K ist der Ausübungspreis, r ist der risikofreie Zinssatz und T ist die Zeit bis zur Fälligkeit. Die Formel für d1 ist: (ln (S K) (r (annualisierte Volatilität) 2 2) T) (annualisierte Volatilität (T (0,5))). Die Formel für d2 ist: d1 - (annualisierte Volatilität) (T (0,5)). Einschränkungen Wie bereits erwähnt, wird das Black Scholes-Modell nur zum Preis von europäischen Optionen verwendet und berücksichtigt nicht, dass amerikanische Optionen vor dem Verfallsdatum ausgeübt werden können. Darüber hinaus geht das Modell davon aus, dass Dividenden und risikofreie Zinsen konstant sind, aber dies kann in der Realität nicht wahr sein. Das Modell geht davon aus, dass die Volatilität über das Optionsleben konstant bleibt, was nicht der Fall ist, da die Volatilität mit dem Angebot von Angebot und Nachfrage schwankt.
No comments:
Post a Comment